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Learning Goals

▪ Getting an overview about hypothesis testing

▪ Learning about operationalization of concepts

▪ Learning more about statistical significance

▪ Learning about error types in hypothesis testing

▪ Understanding methods for increasing the statistical power  
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Research Question

▪ Must ask for new knowledge

▪ Formulation of the goal of a research project. It can be

▪ answered in whole 

▪ answered in part or under certain circumstances

▪ rejected as unanswerable

▪ only an apparent problem

▪ Research questions often test one (or more) hypotheses 
within a paradigm or theoretical framework

▪ A research question is a more general concept of a hypothesis

▪ e.g., “Is there an Uncanny Valley of animals?” [1]
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Hypothesis vs Theory?

▪ A hypothesis…

▪ is a proposed explanation (for a phenomenon)

▪ is a logical consequence („if… then“…)

▪ can be tested

▪ A working hypothesis…

▪ is a hypothesis that is provisionally accepted as a basis for 
further research

▪ A theory…

▪ is an abstract and generalized thinking about a phenomenon

▪ is a group of logical explanations based on empirical data
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▪ Alternative Hypothesis (“H1”, “H2”…)

▪ e.g., “There is a difference in typing speed between males and 
females“

▪ Directional Hypothesis („H1a”):

▪ e.g., “Males have a lower typing speed than females“

▪ Null hypothesis (“H0”)

▪ e.g., “There is no difference in typing speed between males and 
females“

Types
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Types

▪ Deterministic

▪ e.g., “The difference in typing speed between males and 
females is between 12-19 WPM.“

▪ Probabilistic

▪ e.g., “The difference in typing speed between males and 
females is between 12-19 WPM with a probability of 75%.“

▪ Classifying

▪ e.g., „People that are trained on typing with keyboards have an 
increased typing speed to those that are not trained.“

▪ Comparative

▪ e.g., „The more training people have in typing on keyboards, the
higher their typing speed.“
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Five What‘s

▪ What is the research question?

▪ What is the hypothesis?

▪ What is the correct test for the hypothesis (falsifiability)?

▪ What are the independent variables?

▪ Is the factor within or between subjects?

▪ What are the dependent variables?

▪What is the concept that should be measured?

▪ Objective or subjective?

▪ e.g., performance, usability, fun, immersion, fitness, health, …

→ What is the consensus about how a concept should be
operationalized?
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Subjective Measures need Concepts

▪ Ambigous mental representations

▪ e.g., „health“

▪ Are composed of different variables 

▪ e.g., „mental health“ and „physical health“

▪ Variable definitions

▪ e.g., „mental health is the absence of mental illness“ or „physical
health is the capacity to carry out daily activities“

▪ An operational definition [1] is used to determine the
existance of a phenomenon

▪ e.g., „for assessing mental illness: Mental Well-being Scale
(WEMWBS) and the GHQ-9 tool “
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Operationalization of Concepts

▪ The process of defining the measurement for a concept that 
is not directly measurable

▪ Making a fuzzy concept (e.g., emotions, likeability, 
memorability, usability, health, …) clearly 

▪ distinguishable

▪measurable

▪ understandable

▪ Helps infer the existence of a concept

▪ Should be repeatable

▪ Depends on theoretical definitions

▪ Often defined by standardized tool and consensus
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Examples

▪ iPhone users type very fast
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Example

▪ iPhone users type very fast

→Getting an iPhone increases the typing performance (H1) and 
decreases workload (H2) compared to getting an Android phone

▪ Typing performance can operationalized by

▪ words per minute (WPM)

▪ characters per minute (CPM)

▪ error rate

▪ number of wrong / number of total words

▪ number of backspace presses / number of characters

▪Workload can be operationalized by

▪ NASA TLX score

▪ Hypothesis tests on single or all measures?
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Testing Using Multiple Measures

▪ Multiple measures

▪ often reflect aspects of the same concept

▪ we can expect correlations

▪ e.g., more WPM = more CPM = less errors

▪ increases the internal validity

▪ What if the hypothesis postulates that one measure has an 
impact on another?

▪ e.g., more errors increase workload

→ Depends on the correct experimental design and the statistical
test!
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Statistical Significance

▪ A statistical significant effect exists if the probability that the 
difference occurred is below a certain significance level

▪ Significance level (α)

▪ Lower significance level means higher evidence

▪ Arbitrary, but typical significance level: α = 0.05

▪ Significant results (p < α)

▪ Null hypothesis can be rejected

▪ There is a statistical significant difference

▪ Non-Significant results (p >= α)

▪ Null hypothesis cannot be rejected

▪We cannot conclude anything!
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Type I & Type II Errors

▪ p = 0.028

Hypothesis Testing Valentin Schwind18

Type I error

(False Positive)

non-existing effect found

2.8%

tr
u

e

E
ff

e
c

t
fo

u
n

d

false

Effect exists



Type I & Type II Errors

▪ p = 0.028

Hypothesis Testing Valentin Schwind19

Type I error

(False Positive)

non-existing effect found

2.8%

Correct

(True Positive)

existing effect was found

97.2%

tr
u

e

E
ff

e
c

t
fo

u
n

d

false true

Effect exists
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Type III and Type IV Errors

▪ Type III error: “Wrong hypothesis, right answer”

▪ Incorrect operationalization of variables

▪ Poor theory (e.g., ad hoc explanations of findings) 

▪Mis-identifying causal architecture

▪ e.g., focusing on inter-individual factors (gender- or age-related 
differences) rather than structural factors

▪ Researcher is either focusing on theory or on evaluation but not 
on the reasoning chain

▪ Type IV error: “Right hypothesis, wrong answer”

▪ Collinearity among predictors 

▪Wrong test

▪ Aggregation bias
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Example

▪ Let’s assume we performed a 
paired t-test

▪ p = 0.67 > α = 0.05  

▪ Reject H1. No significant 
difference between the 
conditions

▪We cannot conclude anything
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10 1.72 2.07



Example

▪ Let’s assume we draw a better 
sample

▪ p = 0.028 < 0.05

▪ Reject H0. Significant difference 
between the conditions

▪ Typing on the iPhone results in a 
higher CPS than typing on the 
N95

▪ One outlier between rejecting 
and accepting H0 indicates a 
weak statistical power!
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Statistical Power

▪ Statistical power is the probability that the test correctly 
rejects the null hypothesis (H0) when the alternative 
hypothesis (H1) is true

▪ Aspects that increase the statistical power

▪ control all factors

▪ increasing the sample size

▪ increasing the effect size

▪ increasing the number of conditions

▪ increasing the number of measures

▪ increasing the statistical significance 
criterion (α = 0.05)
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Statistical Power

▪ Statistical power is the probability that the test correctly 
rejects the null hypothesis (H0) when the alternative 
hypothesis (H1) is true

▪ Aspects that increase the statistical power:

▪ control all factors

▪ increasing the sample size

▪ increasing the effect size

▪ increasing the number of conditions

▪ increasing the number of measures

▪ increasing the statistical significance 
criterion (α = 0.05)
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Increasing Statistical Power

▪ Increasing the sample size

▪More subjects

▪More trials

▪ Increasing the effect size

▪ Reduce noise as much as possible

▪ Task repetition (e.g., ask participants to enter 100 phrases instead of 
1 and take the average)

▪ Similar tasks (e.g., use phrases with the same difficulty instead of 
random phrases)

▪ Remove outliers (e.g., remove samples that are 3x away from 
the standard deviation → only works under certain criteria)

▪ Build something really good 
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Increasing Statistical Power

▪ Take multiple similar measures, e.g., for task performance:

▪ Task completion time (TCT)

▪ Error rate

▪ Perceived task load (e.g., NASA TLX)

▪ Subjective impression (e.g., SUS) 

▪ Measurements or conditions that cannot be justified should 
not be taken

▪ Measure covariates (co-factors) you cannot or do not want 
to control (e.g., gender, hand size, height of the participants, 
glass wearer, etc.)
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Familywise Error Rate (FWER)

▪ Too many conditions increase the probability that
Type I errors occur. An estimation of FWER is:

𝐹 ≤ 1 − 1 − 𝛼 𝑐

▪ α = alpha level for an individual test (e.g., 0.05)

▪ c = number of tests

▪ For example, with an alpha level of 5% and a series of 10 
tests, the FWER is:

𝐹 = 1 − 1 − 0.05 10 = .401 = 40%

▪ This means that the probability of a Type I error is just over 
40%, which is very high considering only ten tests were 
performed.
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P-Value Adjustment

▪ Too many tests increase the probability of an inflation of
Type I errors

▪ Solution: Bonferroni-correction: „Divide the alpha level by 
the number of tests you’re running and apply that alpha 
level to each individual test.”

▪ e.g., if your overall alpha level is 0.05 and you are running 10 
tests, then each test will have an alpha level of 0.05/10 = 0.005

▪ Apply the new alpha level to each test for finding p-values. In 
this example, the p-value would have to be 0.005 or less for 
statistical significance
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Multiple Measures

▪ Multiple measures allow to answer more research questions 
with minimal additional effort

▪ Multiple-item measure can be tested for internal consistency 
(there are consistency tests such as Cronbach’s alpha)

▪ When an independent variable is a construct that is 
manipulated indirectly, use a manipulation check

→Usually a measure of the independent variable given at the end 
of the procedure

→You can use statistical tests to check for manipulation 
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Determine the Statistical Power

▪ There are tools to perform a 
power analysis

▪ can be used to determine the 
number of participants

▪ require an effect size

▪ see G*Power [1]
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und-arbeitspsychologie/gpower.html



Determine the Statistical Power

▪ Example: The difference
between two means in a 
paired t-Test

▪ For an estimated effect size
of 0.5 (medium) 

→ you need 100 participants

▪ For an estimated effect size
of 1.0 (large) 

→ you need 28 participants

▪ For an estimated effect size
of 2.0 (very large) 

→ you need 10 participants
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Statistical Tests (Examples)
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Analysis Application Examples

Factor/

Component

Searches for joint variations of observed variables in 

response to unobserved latent variables (factors)
• PCA

• EFA

Correlation
Determines the degree to which a pair of variables are 

linearly related

• Person

• Spearman

• Kendall

Regression
Models the functional relationship between a dependent 

variable and one or more independent variables

• Linear 

• Logistic

• Nonlinear

• Nonparametric

Cluster
Statistically grouping a set of objects in such a way that 

they are in the same group and more similar to each 

other than to those in other groups

• K-Means

• MDS

• HC

Variance
Analyzes the differences among group means in a 

sample.

• t-Test

• ANOVA

• ART-ANOVA

Equivalence 
The null hypothesis is defined as an effect large enough 

to be deemed interesting, specified by an equivalence 

bound.

• TOST

• Bayes 



Summary

▪ Experiments and statistical analysis can isolate cause and 
effect and are used for testing hypotheses 

▪ Make an hypothesis testable and falsifiable (null-hypothesis)

▪ Calculate an appropriate sample to increase the statistical 
power and to avoid Type I and Type II errors

▪ Decrease the variance by multiple and repeated measures

▪ Increase the effect size

▪ Below a level of significance level of 0.05, the p-value
indicates if the the null hypothesis can be rejected in favor of
the alternative hypothesis

▪ Results are never true in a sense of being 100% correct!
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