

Image Source: https://pxhere.com/en/photo/1412604

The following content is licensed under a Creative Commons Attribution 4.0 International license (CC BY-SA 4.0)

1

Valentin Schwind

Learning Goals

- Getting an overview about hypothesis testing
- Learning about operationalization of concepts
- Learning more about statistical significance
- Learning about error types in hypothesis testing
- Understanding methods for increasing the statistical power

Research Question

- Must ask for new knowledge
- Formulation of the goal of a research project. It can be
 - answered in whole
 - answered in part or under certain circumstances
 - rejected as unanswerable
 - only an apparent problem
- Research questions often test one (or more) hypotheses within a paradigm or theoretical framework
 - A research question is a more general concept of a hypothesis
 - e.g., "Is there an Uncanny Valley of animals?" [1]

[1] V. Schwind, K. Leicht, S. Jäger, K. Wolf, N. Henze, Is there an uncanny valley of virtual animals? A quantitative and qualitative investigation, International Journal of Human-Computer Studies,

Hypothesis vs Theory?

- A hypothesis...
 - is a proposed explanation (for a phenomenon)
 - is a logical consequence ("if... then"...)
 - can be tested
- A *working* hypothesis...
 - is a hypothesis that is *provisionally* accepted as a basis for further research
- A theory...
 - is an abstract and generalized thinking about a phenomenon
 - is a group of logical explanations based on empirical data

Types

- Alternative Hypothesis ("H1", "H2"...)
 - e.g., "There is a difference in typing speed between males and females"
 - Directional Hypothesis ("H1a"):
 - e.g., "Males have a lower typing speed than females"
- Null hypothesis ("H0")
 - e.g., "There is no difference in typing speed between males and females"

Types

Deterministic

- e.g., "The difference in typing speed between males and females is between 12-19 WPM."
- Probabilistic
 - e.g., "The difference in typing speed between males and females is between 12-19 WPM with a probability of 75%."
- Classifying
 - e.g., "People that are trained on typing with keyboards have an increased typing speed to those that are not trained."
- Comparative
 - e.g., "The more training people have in typing on keyboards, the higher their typing speed."

Five What's

- What is the research question?
- What is the hypothesis?
- What is the correct test for the hypothesis (falsifiability)?
- What are the independent variables?
 - Is the factor within or between subjects?
- What are the dependent variables?
 - What is the concept that should be measured?
 - Objective or subjective?
 - e.g., performance, usability, fun, immersion, fitness, health, ...

→ What is the consensus about how a *concept* should be *operationalized*?

Subjective Measures need Concepts

- Ambigous mental representations
 - e.g., "health"
- Are composed of different variables
 - e.g., "mental health" and "physical health"
- Variable definitions
 - e.g., "mental health is the absence of mental illness" or "physical health is the capacity to carry out daily activities"
- An operational definition [1] is used to determine the existance of a phenomenon
 - e.g., "for assessing mental illness: Mental Well-being Scale (WEMWBS) and the GHQ-9 tool "

[1] P. W. Bridgman: The Logic of Modern Physics. MacMillian, New York 1927.

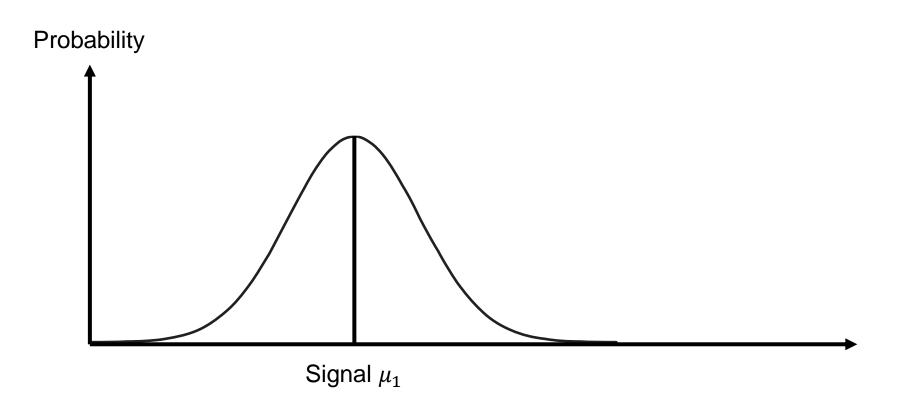
Operationalization of Concepts

- The process of defining the measurement for a concept that is not directly measurable
- Making a fuzzy concept (e.g., emotions, likeability, memorability, usability, health, ...) clearly
 - distinguishable
 - measurable
 - understandable
- Helps infer the existence of a concept
- Should be repeatable
- Depends on theoretical definitions
- Often defined by standardized tool and consensus

Examples

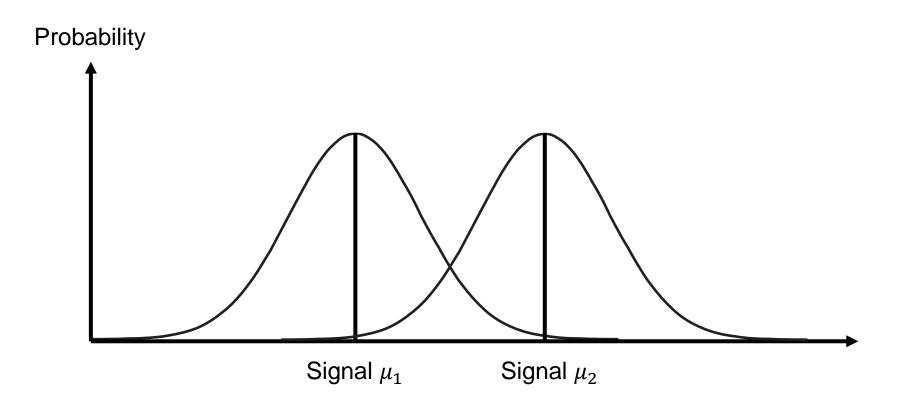
iPhone users type very fast

Example

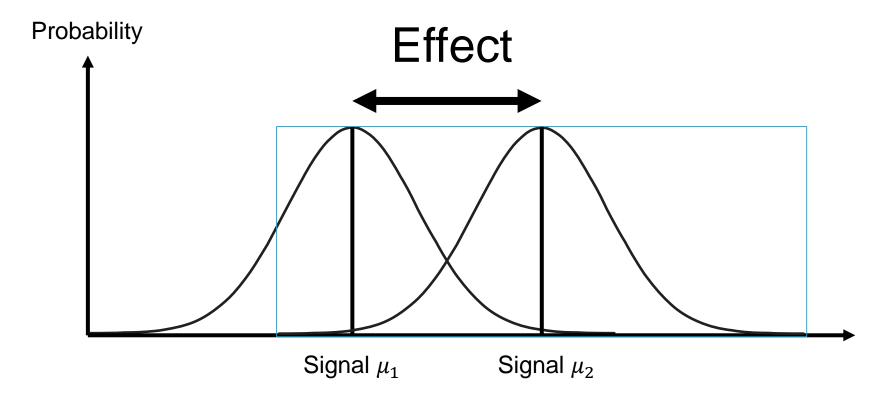

iPhone users type very fast

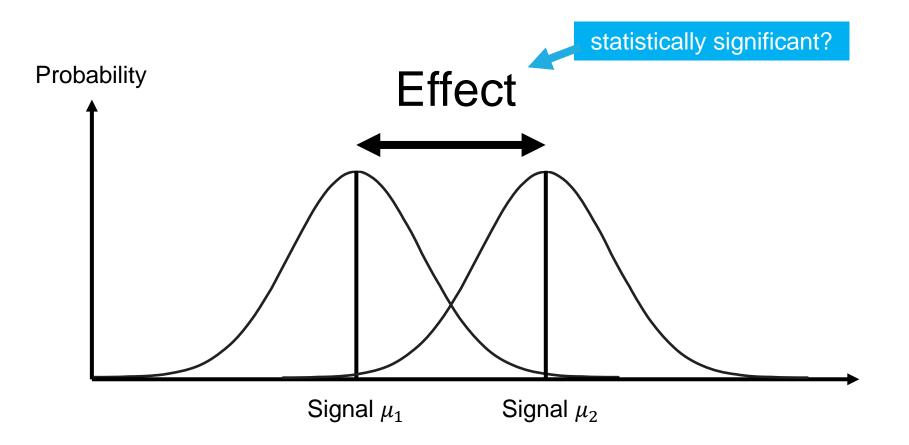
- Getting an iPhone increases the typing performance (H1) and decreases workload (H2) compared to getting an Android phone
- Typing performance can operationalized by
 - words per minute (WPM)
 - characters per minute (CPM)
 - error rate
 - number of wrong / number of total words
 - number of backspace presses / number of characters
- Workload can be operationalized by
 - NASA TLX score
- Hypothesis tests on single or all measures?

Testing Using Multiple Measures


- Multiple measures
 - often reflect aspects of the same concept
 - we can expect correlations
 - e.g., more WPM = more CPM = less errors
 - increases the internal validity
- What if the hypothesis postulates that one measure has an impact on another?
 - e.g., more errors increase workload

 \rightarrow Depends on the correct experimental design and the statistical test!


Hypothesis Testing


Valentin Schwind

Hypothesis Testing

Valentin Schwind

Statistical Significance

- A statistical significant effect exists if the probability that the difference occurred is below a certain significance level
- Significance level (α)
 - Lower significance level means higher evidence
 - Arbitrary, but typical significance level: $\alpha = 0.05$
- Significant results (p < α)
 - Null hypothesis can be rejected
 - There is a statistical significant difference
- Non-Significant results (p >= α)
 - Null hypothesis cannot be rejected
 - We cannot conclude anything!

• p = 0.028

Type I error (False Positive)

non-existing effect found 2.8%

true Effect found

false

Effect exists

Hypothesis Testing

• p = 0.028

Type I error (False Positive) non-existing effect found 2.8%	Correct (True Positive) existing effect was found 97.2%	true	found
			Effect

false	true		
Effect	exists		
Hypothesis Testing		19	

Valentin Schwind

■ p = 0.28 ←

Type I error (False Positive) non-existing effect found	Correct (True Positive) existing effect was found	true	Errect round
Correct (True Negative) no effect exists, no effect found 72%		false	EITECI
false	true		
Effect exists			

Hypothesis Testing

■ p = 0.28 ←

Type I error (False Positive) non-existing effect found	Correct (True Positive) existing effect was found	true	Effect found
Correct (True Negative) no effect exists, no effect found 72%	Type II error (False Negative) effect exists, but is not found 28%	false	Effect
false	true		
Effect exists			

Hypothesis Testing

Type III and Type IV Errors

- Type III error: "Wrong hypothesis, right answer"
 - Incorrect operationalization of variables
 - Poor theory (e.g., ad hoc explanations of findings)
 - Mis-identifying causal architecture
 - e.g., focusing on inter-individual factors (gender- or age-related differences) rather than structural factors
 - Researcher is either focusing on theory or on evaluation but not on the reasoning chain
- Type IV error: "Right hypothesis, wrong answer"
 - Collinearity among predictors
 - Wrong test
 - Aggregation bias

Example

- Let's assume we performed a paired t-test
- p = 0.67 > α = 0.05
 - Reject H1. No significant difference between the conditions
 - We cannot conclude anything

	Nokia N95	iPhone
1	1.89	2.39
2	1.82	1.86
3	7.12	1.82
4	2.30	2.34
5	1.66	1.94
6	1.84	2.01
7	1.80	2.28
8	1.45	2.06
9	1.54	1.91
10	1.72	2.07

Example

- Let's assume we draw a better sample
- p = 0.028 < 0.05
 - Reject H0. Significant difference between the conditions
 - <u>Typing on the iPhone results in a</u> <u>higher CPS than typing on the</u> <u>N95</u>
- One outlier between rejecting and accepting H0 indicates a weak statistical power!

	Nokia N95	iPhone	
1	1.89	2.39	
2	1.82	1.86	
3	2.30	1.82	
4	2.30	2.34	
5	1.66	1.94	
6	1.84	2.01	
7	1.80	2.28	
8	1.45	2.06	
9	1.54	1.91	
10	1.72	2.07	

Statistical Power

- Statistical power is the probability that the test correctly rejects the null hypothesis (H0) when the alternative hypothesis (H1) is true
- Aspects that increase the statistical power
 - control all factors
 - increasing the sample size
 - increasing the effect size
 - increasing the number of conditions
 - increasing the number of measures
 - increasing the statistical significance criterion (α = 0.05)

Statistical Power

- Statistical power is the probability that the test correctly rejects the null hypothesis (H0) when the alternative hypothesis (H1) is true
- Aspects that increase the statistical power:
 - control all factors
 increasing the sample size
 increasing the effect size
 increasing the number of conditions
 increasing the number of measures
 increasing the statistical significance criterion (α = 0.05)

Increasing Statistical Power

- Increasing the sample size
 - More subjects
 - More trials
- Increasing the effect size
 - Reduce noise as much as possible
 - Task repetition (e.g., ask participants to enter 100 phrases instead of 1 and take the average)
 - Similar tasks (e.g., use phrases with the same difficulty instead of random phrases)
 - Remove outliers (e.g., remove samples that are 3x away from the standard deviation → only works under certain criteria)
 - Build something really good

Increasing Statistical Power

- Take multiple *similar* measures, e.g., for task performance:
 - Task completion time (TCT)
 - Error rate
 - Perceived task load (e.g., NASA TLX)
 - Subjective impression (e.g., SUS)
- Measurements or conditions that cannot be justified should not be taken
- Measure covariates (co-factors) you cannot or do not want to control (e.g., gender, hand size, height of the participants, glass wearer, etc.)

Familywise Error Rate (FWER)

 Too many conditions increase the probability that Type I errors occur. An estimation of FWER is:

$$F \le 1 - (1 - \alpha)^c$$

• α = alpha level for an individual test (e.g., 0.05)

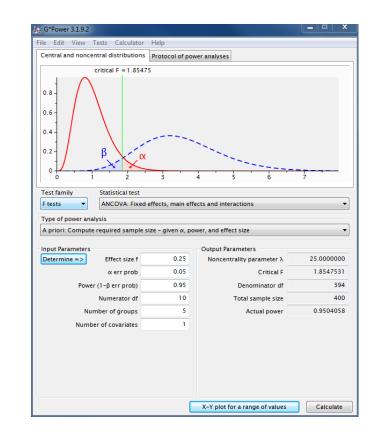
c = number of tests

For example, with an alpha level of 5% and a series of 10 tests, the FWER is:

 $F = 1 - (1 - 0.05)^{10} = .401 = 40\%$

This means that the probability of a Type I error is just over 40%, which is very high considering only ten tests were performed.

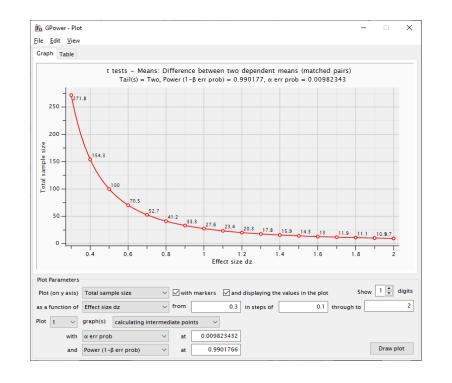
P-Value Adjustment


- Too many tests increase the probability of an inflation of Type I errors
- Solution: Bonferroni-correction: "Divide the alpha level by the number of tests you're running and apply that alpha level to each individual test."
 - e.g., if your overall alpha level is 0.05 and you are running 10 tests, then each test will have an alpha level of 0.05/10 = 0.005
 - Apply the new alpha level to each test for finding p-values. In this example, the p-value would have to be 0.005 or less for statistical significance

Multiple Measures

- Multiple measures allow to answer more research questions with minimal additional effort
- Multiple-item measure can be tested for internal consistency (there are consistency tests such as Cronbach's alpha)
- When an independent variable is a construct that is manipulated indirectly, use a *manipulation check*
 - Usually a measure of the independent variable given at the end of the procedure
 - \rightarrow You can use statistical tests to check for manipulation

Determine the Statistical Power


- There are tools to perform a power analysis
 - can be used to determine the number of participants
 - require an effect size
 - see G*Power [1]

[1] G*Power: Statistical Power Analyses: https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologieund-arbeitspsychologie/gpower.html

Determine the Statistical Power

- Example: The difference between two means in a paired t-Test
 - For an estimated effect size of 0.5 (medium)
 - \rightarrow you need 100 participants
 - For an estimated effect size of 1.0 (large)
 - \rightarrow you need 28 participants
 - For an estimated effect size of 2.0 (very large)
 - \rightarrow you need 10 participants

[1] G*Power: Statistical Power Analyses: https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologieund-arbeitspsychologie/gpower.html

Hypothesis Testing

Analysis	Application	Examples
Factor/ Component	Searches for joint variations of observed variables in response to unobserved latent variables (factors)	PCAEFA

Analysis	Application	Examples
Factor/ Component	Searches for joint variations of observed variables in response to unobserved latent variables (factors)	PCAEFA
Correlation	Determines the degree to which a pair of variables are linearly related	PersonSpearmanKendall

Analysis	Application	Examples
Factor/ Component	Searches for joint variations of observed variables in response to unobserved latent variables (factors)	• PCA • EFA
Correlation	Determines the degree to which a pair of variables are linearly related	PersonSpearmanKendall
Regression	Models the functional relationship between a dependent variable and one or more independent variables	 Linear Logistic Nonlinear Nonparametric

Analysis	Application	Examples
Factor/ Component	Searches for joint variations of observed variables in response to unobserved latent variables (factors)	PCAEFA
Correlation	Determines the degree to which a pair of variables are linearly related	PersonSpearmanKendall
Regression	Models the functional relationship between a dependent variable and one or more independent variables	 Linear Logistic Nonlinear Nonparametric
Cluster	Statistically grouping a set of objects in such a way that they are in the same group and more similar to each other than to those in other groups	K-MeansMDSHC

Analysis	Application	Examples
Factor/ Component	Searches for joint variations of observed variables in response to unobserved latent variables (factors)	PCAEFA
Correlation	Determines the degree to which a pair of variables are linearly related	PersonSpearmanKendall
Regression	Models the functional relationship between a dependent variable and one or more independent variables	 Linear Logistic Nonlinear Nonparametric
Cluster	Statistically grouping a set of objects in such a way that they are in the same group and more similar to each other than to those in other groups	K-MeansMDSHC
Variance	Analyzes the differences among group means in a sample.	t-TestANOVAART-ANOVA

Analysis	Application	Examples
Factor/ Component	Searches for joint variations of observed variables in response to unobserved latent variables (factors)	PCAEFA
Correlation	Determines the degree to which a pair of variables are linearly related	PersonSpearmanKendall
Regression	Models the functional relationship between a dependent variable and one or more independent variables	 Linear Logistic Nonlinear Nonparametric
Cluster	Statistically grouping a set of objects in such a way that they are in the same group and more similar to each other than to those in other groups	K-MeansMDSHC
Variance	Analyzes the differences among group means in a sample.	t-TestANOVAART-ANOVA
Equivalence	The null hypothesis is defined as an effect large enough to be deemed interesting, specified by an equivalence bound.	TOSTBayes

Summary

- Experiments and statistical analysis can isolate cause and effect and are used for testing hypotheses
- Make an hypothesis testable and falsifiable (null-hypothesis)
- Calculate an appropriate sample to increase the statistical power and to avoid Type I and Type II errors
- Decrease the variance by multiple and repeated measures
- Increase the effect size
- Below a level of significance level of 0.05, the p-value indicates if the the null hypothesis can be rejected in favor of the alternative hypothesis
- Results are never true in a sense of being 100% correct!

Literature

- Field, Andy & Hole, Graham. (2003). How to Design and Report Experiments.
- Field, Andy (2013). Discovering Statistics Using IBM SPSS Statistics.
- Lehmann, Erich Leo (1959). *Testing Statistical Hypotheses.*